30 research outputs found

    逐次干渉除去を用いた多元接続システムのパワー割り当てに関する研究

    Get PDF
    In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting.電気通信大学201

    Non-Orthogonal Random Access in MIMO Cognitive Radio Networks: Beamforming, Power Allocation, and Opportunistic Transmission.

    No full text
    We study secondary random access in multi-input multi-output cognitive radio networks, where a slotted ALOHA-type protocol and successive interference cancellation are used. We first introduce three types of transmit beamforming performed by secondary users, where multiple antennas are used to suppress the interference at the primary base station and/or to increase the received signal power at the secondary base station. Then, we show a simple decentralized power allocation along with the equivalent single-antenna conversion. To exploit the multiuser diversity gain, an opportunistic transmission protocol is proposed, where the secondary users generating less interference are opportunistically selected, resulting in a further reduction of the interference temperature. The proposed methods are validated via computer simulations. Numerical results show that increasing the number of transmit antennas can greatly reduce the interference temperature, while increasing the number of receive antennas leads to a reduction of the total transmit power. Optimal parameter values of the opportunistic transmission protocol are examined according to three types of beamforming and different antenna configurations, in terms of maximizing the cognitive transmission capacity. All the beamforming, decentralized power allocation, and opportunistic transmission protocol are performed by the secondary users in a decentralized manner, thus resulting in an easy implementation in practice

    Studies on Power Allocation for Multiple Access with Successive Interference Cancellation

    No full text
    2015In future wireless communication networks, the number of devices is likely to increase dramatically due to potential development of new applications such as the Internet of Things (IoT). Consequently, radio access network is required to support multiple access of massive users and achieve high spectral efficiency. From the information theoretic perspective, orthogonal multiple access protocols are suboptimal. To achieve the multiple access capacity, non-orthogonal multiple access protocols and multiuser detection (MUD) are required. For the non-orthogonal code-division multiple access (CDMA), several MUD techniques have been proposed to improve the spectrum efficiency. Successive interference cancellation (SIC) is a promising MUD techniques due to its low complexity and good decoding performance. Random access protocols are designed for the system with bursty traffic to reduce the delay, compared to the channelized multiple access. Since the users contend for the channel instead of being assigned by the base station (BS), collisions happen with a certain probability. If the traffic load becomes relatively high, the throughput of these schemes steeply falls down because of collisions. However, it has been well-recognized that more complex procedures can permit decoding of interfering signals, which is referred to as multi-packet reception (MPR). Also, an SIC decoder might decode more packets by successively subtracting the correctly decoded packets from the collision. Cognitive radio (CR) is an emerging technology to solve the problem of spectrum scarcity by dynamically sharing the spectrum. In the CR networks, the secondary users (SUs) are allowed to dynamically share the frequency bands with primary users (PUs) under primary quality-of-service (QoS) protection such as the constraint of interference temperature at the primary base station (PBS). For the uplink multiple access to the secondary base station (SBS), transmit power allocation for the SUs is critical to control the interference temperature at the PBS. Transmit power allocation has been extensively studied in various multiple access scenarios. The power allocation algorithms can be classified into two types, depending on whether the process is controlled by the base station (BS). For the centralized power allocation (CPA) algorithms, the BS allocates the transmit powers to the users through the downlink channels. For the random access protocols, there are also efforts on decentralized power allocation (DPA) that the users select transmit powers according to given distributions of power and probability, instead of being assigned the transmit power at each time slot by the BS. In this dissertation, the DPA algorithms for the random access protocols with SIC are investigated and new methods are proposed. First a decentralized multilevel power allocation algorithm to improve the MAC throughput performance is proposed, for the general SIC receiver that can decode multiple packets from one collision. Then an improved DPA algorithm to maximize the overall system sum rate is proposed, taking into account of both the MAC layer and PHY layer. Finally, a DPA algorithm for the CR secondary random access is proposed, considering the constraint of interference temperature and the practical assumption of imperfect cancellation. An opportunistic transmission protocol for the fading environment to further reduce the interference temperature is also proposed. For the future work, the optimal DPA for the random access with the SIC receiver is still an open problem. Besides, advanced multiple access schemes that aim to approach the multiple access capacity by combining the advantages of the network coded cooperation, the repetition slotted ALOHA, and the SIC receiver are also interesting

    How to measure country-level financial reporting quality?

    No full text
    Purpose: The purpose of this study is to measure the financial reporting quality of 38 main countries (regions) in the world from 2000 to 2014. Design/methodology/approach: This paper uses six accounting and auditing indicators to construct a comprehensive index for the measurement of country-level financial reporting quality. To test the validity of the methodology, the index to test institutional impacts on national financial reporting quality is used. Findings: It was found that the results are consistent with the predictions and previous studies. The evidence suggests that the quality measure in this paper is innovative and appropriate and can provide a useful tool for researchers who are concerned with financial reporting quality at the country level. Originality/value: The study is the first in the literature to use both accounting and auditing data to construct financial reporting quality indicators. The study should help international investors assess investment risks in foreign financial markets so as to make an informed decision. In addition, the diversity of financial reporting practices documented in the paper should prompt market regulators, accounting standard setters and professional accounting bodies to reinforce the efforts on international convergence of accounting and financial reporting standards and practices

    Support Vector Machine-Based Transmit Antenna Allocation for Multiuser Communication Systems

    No full text
    In this paper, a support vector machine (SVM) technique has been applied to an antenna allocation system with multiple antennas in multiuser downlink communications. Here, only the channel magnitude information is available at the transmitter. Thus, a subset of transmit antennas that can reduce multiuser interference is selected based on such partial channel state information to support multiple users. For training, we generate the feature vectors by fully utilizing the characteristics of the interference-limited setup in the multiuser downlink system and determine the corresponding class label by evaluating a key performance indicator, i.e., sum rate in multiuser communications. Using test channels, we evaluate the performance of our antenna allocation system invoking the SVM-based allocation and optimization-based allocation, in terms of sum-rate performance and computational complexity. Rigorous testing allowed for a comparison of a SVM algorithm design between one-vs-one (OVO) and one-vs-all (OVA) strategies and a kernel function: (i) OVA is preferable to OVO since OVA can achieve almost the same sum rate as OVO with significantly reduced computational complexity, (ii) a Gaussian function is a good choice as the kernel function for the SVM, and (iii) the variance (kernel scale) and penalty parameter (box constraint) of an SVM kernel function are determined by 21.56 and 7.67, respectively. Further simulation results revealed that the designed SVM-based approach can remarkably reduce the time complexity compared to a traditional optimization-based approach, at the cost of marginal sum rate degradation. Our proposed framework offers some important insights for intelligently combining machine learning techniques and multiuser wireless communications

    The transmit power performance.

    No full text
    <p>The total transmit power versus the ratio of candidate SUs, <i>δ</i>, for various antenna configurations, where the BF-2 is employed.</p

    The system model.

    No full text
    <p>The secondary random access in our MIMO CR network, consisting of <i>K</i> SUs, one SBS, and one PBS.</p

    The interference temperature for three types of beamforming techniques.

    No full text
    <p>The average interference temperature versus the ratio of candidate SUs, <i>δ</i>, for three types of beamforming techniques (<i>N</i><sub><i>t</i></sub> = 4, <i>N</i><sub><i>r</i></sub> = 16). The analytical results with no OTP (<i>δ</i> = 1) in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0169902#pone.0169902.e073" target="_blank">Eq (23)</a> are also plotted for validation.</p
    corecore